RANBY HOUSE PREP SCHOOL STAND OUT FROM THE CROWD

A Guide for Ranby House Parents

HOW WE TEACH MATHEMATICS

Helping your child with calculations
www.wsnl.co.uk/prep

Your child's FUTURE matters to us.
'BE the BEST you can BE in all that you do.'
Being THE sector leading school in the area and the FIRST SCHOOL of CHOICE for parents and families.

RANBY HOUSE PREP SCHOOL STAND OUT FROM THE CROWD

The following calculation guide has been devised to meet the requirements of the National Curriculum 2014
for the teaching and learning of mathematics, and is also designed to ensure a consistent and progressive approach to learning calculations across the school. Please note that early learning in Number and Calculation in EYFS (Nursery 1, 2 and Reception) follows the "Development Matters" EYFS document, and this calculation policy is designed to build progressively from the content and methods established in the Early Years Foundation Stage.

Age and stage expectations

Calculation procedures are taught according to this document so they can be seamlessly built upon year after year, as the child moves through school.

The policy has been taken and adapted to suit from White Rose Maths. We have found their calculation policy to be the one which works for the needs of our children and suits the way in which we teach Maths. The use of concrete resources and visuals underpins this calculation policy, which is what you would see in a maths lesson.

Providing a context for calculation

It is important that any type of calculation is given a real-life context to help build children's understanding of the purpose of calculation, and to help them recognise when to use certain operations and methods when faced with problems. This is done through problem solving and reasoning puzzles.

Choosing a calculation method

Each operation is broken down into skills for the year group and shows recommended models and visuals to support the teaching of the corresponding concepts alongside.

Use a range of hands-on practical manipulatives and visual equipment to represent 1 more and 1 less.

Number songs and practical equipment used daily.

Key vocabulary: add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line

Key skills for addition at Reception:
Read and begin to write numbers to 10 in numerals
Be introduced to counting in multiples of 1 and 2
Solve simple one-step problems involving addition, using objects, number lines and pictorial Representations
Subitise.

Understanding teen numbers as a complete 10 and some more Complete a group of 10 objects and count more.	Understanding teen numbers as a complete 10 and some more Use a ten frame to support understanding of a complete 10 for teen numbers.	Understanding teen numbers as a complete 10 and some more.
1 ten and 3 ones equal 13.		
$10+3=13$		

Adding the 1s Children represent calculations using ten frames to add a teen and 1s.	Adding the 1s Children recognise that a teen is made from a 10 and some 1s and use their knowledge of addition within 10 to work efficiently.
$3+5=8$ So, $13+5=18$ $12+3=5$	

Key vocabulary: add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line, part/whole model

Key skills for addition at Y 1 :

Read and write numbers to 100 in numerals, including 1-20 in words within 20
Recall bonds to 10 and 20, and addition facts within 20
Count to and across 100 (using 100 square)
Count in multiples of 1, 2,5 and 10
Solve simple one-step problems involving addition, using objects, number lines and pictorial representations including recognising the operation sign in a number sentence

Year 2			
Year 2 Addition	Concrete	Pictorial	Abstract
Understanding 10s and 1s	Group objects into 10s and 1s． Bundle straws to understand unitising of 10s．	Understand 10s and 1s equipment，and link with visual representations on ten frames．	Represent numbers on a place value grid， using equipment or numerals．
Adding 10s	Use known bonds and unitising to add 10s． （iII） 1 know that $4+3=7$ ． So， 1 know that 4 tens add 3 tens is 7 tens．	Use known bonds and unitising to add 10s． 1 know that $4+3=7$ ． So， 1 know that 4 tens add 3 tens is 7 tens．	Use known bonds and unitising to add 10s． $\begin{aligned} & 4+3=\square \\ & 4+3=7 \\ & 4 \text { tens }+3 \text { tens }=7 \text { tens } \\ & 40+30=70 \end{aligned}$

Adding a 1－digit number to a 2－digit number not bridging a 10	Add the 1s to find the total．Use known bonds within 10 ． 41 is 4 tens and 1 one． 41 add 6 ones is 4 tens and 7 ones． This can also be done in a place value grid．	Add the 1 s ． 34 is 3 tens and 4 ones． 4 ones and 5 ones are 9 ones． The total is 3 tens and 9 ones．
Adding a 1－digit number to a 2－digit number bridging 10	Complete a 10 using number bonds． $+ \text { Mnting }$ There are 4 tens and 5 ones． I need to add 7 ．I will use 5 to complete a 10 ，then add 2 more．	Complete a 10 using number bonds．

Key vocabulary：add，more，plus，and，make，altogether，total，equal to，equals，double，most，
count on，number line，sum，tens，ones，partition，addition，column，bar model，exchange
Key skills for addition at Y 2
Add a 2－digit number and ones（e．g． $27+6$ ）
Add a 2－digit number and tens（e．g． $23+40$ ）
Add pairs of 2－digit numbers（e．g． $35+47$ ）
Add three single－digit numbers（e．g． $5+9+7$ ）
Show that adding can be done in any order（the commutative law）
Recall bonds to 20 and bonds of tens to 100 （ $30+70$ etc）
Count in steps of 2,3 and 5 and count in tens from any number
Understand the place value of 2－digit numbers（tens and ones）
Compare and order numbers to 100 using＜＞and $=$ signs
Read and write numbers to at least 100 in numerals and words
Solve problems with addition，using concrete objects，pictorial representations，involving numbers，
quantities and measures，and applying mental and written methods

| Adding two
 2-digit
 numbers using
 a place value
 grid | Add the 1s. Then add the 10s. | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Tens | Ones | |

Adding a 1-digit number to a 2-digit number using exchange	Exchange 10 ones for 1 ten.	Exchange 10 ones for 1 ten.	Exchange 10 ones for 1 ten.
	T 0 4 1 se		
Adding a multiple of 10 to a 2-digit number	Add the 10 s and then recombine. 27 is 2 tens and 7 ones. 50 is 5 tens. There are 7 tens in total and 7 ones. So, $27+50$ is 7 tens and 7 ones.	Add the 10 s and then recombine. 66 is 6 tens and 6 ones. $66+10=76$ A 100 square can support this understanding.	Add the 10 s and then recombine. $\begin{aligned} & 37+20=? \\ & 30+20=50 \\ & 50+7=57 \end{aligned}$ $37+20=57$

Key vocabulary: add, more, plus, and, make, altogether, total, equal to, equals, double,
most, count on, number line, sum, tens, ones, partition, plus, addition, column, tens boundary, exchange hundreds boundary, increase, vertical, "carry", expanded, compact
Key skills for addition at Y3:
Read and write numbers to 1000 in numerals and words
Add 2-digit numbers mentally, including those exceeding 100
Add a 3 -digit number and ones mentally $(175+8)$
Add a 3 -digit number and tens mentally $(249+50)$
Add a 3-digit number and hundreds mentally (381 + 400)
Estimate answers to calculations, using inverse to check answers
Solve problems, including missing number problems, using number facts, place value, and more complex addition Recognise place value of each digit in 3-digit numbers (hundreds, tens, ones)
Continue to practise a wide range of mental addition strategies, i.e. number bonds, adding the nearest multiple of $10,100,100$ and adjusting, using near doubles, partitioning and recombining

Key vocabulary: add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line, sum, tens, ones, partition, plus, addition, column, tens boundary, hundreds boundary, increase, vertical, "carry", expanded, compact, thousands, hundreds, digits, inverse

Key skills for addition at y 4 :

Select most appropriate method: mental, jottings or written and explain why
Recognise the place value of each digit in a 4-digit number
Round any number to the nearest 10,100 or 1000
Estimate and use inverse operations to check answers
Solve two-step problems in context, deciding which operations and methods to use and why Find 1000 more or less than a given number
Continue to practise a wide range of mental addition strategies, i.e. number bonds, add the nearest multiple of $10,100,1000$ and adjust, use near doubles, partitioning and recombining Add numbers with up to 4 digits using the formal written method of column addition Solve two-step problems in contexts, deciding which operations and methods to use and why Estimate and use inverse operations to check answers to a calculation

Key vocabulary: add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line, sum, tens, ones, partition, plus, addition, column, tens boundary, exchange hundreds boundary, increase, "carry", expanded, compact, vertical, thousands, hundreds, digits, inverse \& decimal places, decimal point, tenths, hundredths, thousandths, million

Key skills for addition at Y 5 :

Add numbers mentally with increasingly large numbers, using and practising a range of mental strategies,
i.e. add the nearest multiple of $10,100,1000$ and adjust; use near doubles, inverse, partitioning and re-combining; using number bonds
Use rounding to check answers and accuracy
Solve multi-step problems in contexts, deciding which operations and methods to use and why Read, write, order and compare numbers to at least 1 million and determine the value of each digit Round any number up to 1000000 to the nearest 10, 100, 1000, 10000 and 100000
Add numbers with more than 4 digits using formal written method of column addition

Year 6 Add several numbers of increasing complexity
$\left.\begin{array}{r}23 \cdot 3 \\ 9.0 \\ 9 . \\ 5 \\ 9.7\end{array}\right)$

Adding several numbers with different numbers of decimal places (including money and measures):

- Tenths, hundredths and thousandths should be correctly aligned, with the decimal point lined up vertically including in the answer row.
- Zeros could be added into any empty decimal places, to show that there is no value to add.

Adding several numbers with more than 4 digits.

Key vocabulary: add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line, sum, tens, ones, partition, plus, addition, column, tens boundary, hundreds boundary, increase, "carry", exchange, expanded, compact, vertical, digits, inverse, decimal places, decimal point, tenths, hundredths, thousandths including all place value vocabulary from hundreds to million

Key skills for addition at Y6:

Perform mental calculations, including with mixed operations and large numbers, using and practising a range of mental strategies
Solve multi-step problems in context, deciding which operations and methods to use and why Use estimation to check answers to calculations and determine, in the context of a problem, levels of accuracy
Read, write, order and compare numbers up to 10 million and determine the value of each digit Round any whole number to a required degree of accuracy
Pupils understand how to add mentally with larger numbers and calculations of increasing complexity

Subtract from numbers up to 5

Children have an understanding of subtraction practically, showing subtraction on bead strings, using cubes etc. and in familiar contexts, and are gradually introduced to more formal recording using number lines as below:

$$
6-2=4
$$

Children will engage in a variety of counting songs and rhymes and practical activities.
In practical activities and through discussion they will begin to use the vocabulary
Model subtraction using numbered associated with subtraction.

EYFS Subtraction	Counting back and taking away Children arrange objects and remove to find how many are left.	Counting back and taking away Children draw and cross out or use cunters to represent objects from a problem.	Counting back and taking away Children count back to take away and use a number line or number track to support the method.
	Finding a missing part, given a whole and a part Children separate a whole into parts and understand how one part can be found by subtraction. 6 subtract 1 is 5.	$9-3=6$	

Key vocabulary: equal to, take, take away, less, minus, subtract, leaves, how many more, how many fewer / less than, most, least, count back, how many left, how much less is_?

Key skills for subtraction at Reception:

- Given a number, say one more or one less
- Count to and over 10, forward and back, from any number
- Represent and use subtraction facts to 10
- Subtract with one digit, including zero
- Solve one-step problems that involve addition and subtraction, using concrete objects (i.e. bead string, objects, cubes) and pictures, and missing number problems
- Read and write numbers from 0 to 10 in numerals

Year 1 Subtraction	Counting back and taking away Children arrange objects and remove to find how many are left. 1 less than 6 is 5 . 6 subtract 1 is 5 .	Counting back and taking away Children draw and cross out or use counters to represent objects from a problem. $q-\square=\square$ There are \square children left.	Counting back and taking away Children count back to take away and use a number line or number track to support the method. $9-3=6$
	Finding a missing part, given a whole and a part Children separate a whole into parts and understand how one part can be found by subtraction. $8-5=?$	Finding a missing part, given a whole and a part Children represent a whole and a part and understand how to find the missing part by subtraction. $5-4=\square$	Finding a missing part, given a whole and a part Children use a part-whole model to support the subtraction to find a missing part. $7-3=?$ Children develop an understanding of the relationship between addition and subtraction facts in a part-whole model.

	Finding the difference Arrange two groups so that the difference between the groups can be worked out. 8 is 2 more than 6. 6 is 2 less than 8. The difference between 8 and 6 is 2 .	Finding the difference Represent objects using sketches or counters to support finding the difference. $5-4=1$ The difference between 5 and 4 is 1 .	Finding the difference Children understand 'find the difference' as subtraction. $10-4=6$ The difference between 10 and 6 is 4 .
	Subtraction within 20 Understand when and how to subtract is efficiently. Use a bead string to subtract is efficiently. $\begin{gathered} 5-3=2 \\ 15-3=12 \end{gathered}$	Subtraction within 20 Understand when and how to subtract is efficiently. $\begin{aligned} & 5-3=2 \\ & 15-3=12 \end{aligned}$	Subtraction within 20 Understand how to use knowledge of bonds within 10 to subtract efficiently. $\begin{aligned} & 5-3=2 \\ & 15-3=12 \end{aligned}$
	Subtracting 10 s and 1 s For example: 18-12 Subtract 12 by first subtracting the 10 , then the remaining 2 . First subtract the 10, then take away 2.	Subtracting 10s and 1s For example: 18-12 Use ten frames to represent the efficient method of subtracting 12. First subtract the 10 , then subtract 2.	Subtracting 10s and is Use a part-whole model to support the calculation. $\begin{aligned} & 19-14 \\ & 19-10=9 \\ & 9-4=5 \end{aligned}$ So, $19-14=5$

Key vocabulary: equal to, take, take away, less, minus, subtract, leaves, distance between,
how many more, how many fewer / less than, most, least, count back, how many left,
how much less is_?

Key skills for subtraction at Y 1 :
Given a number, say one more or one less
Count to and over 100, forward and back, from any number
Represent and use subtraction facts to 20 and within 20
Subtract with 1-digit and 2-digit numbers to 20, including zero
Solve one-step problems that involve addition and subtraction, using concrete objects (i.e. bead string, objects, cubes) and pictures, and missing number problems Read and write numbers from 0 to 20 in numerals and words

Skill: Subtract 1 and 2-digit numbers to 20	Year: 1/2
	When subtracting one-digit numbers that cross 10 , it is important to highlight the importance of ten ones equalling one ten. Children should be encouraged to find the number bond to 10 when partitioning the subtracted number. Ten frames, number shapes and number lines are particularly useful for this.

Key vocabulary: equal to, take, take away, less, minus, subtract, leaves, distance between, how many more, how many fewer / less than, most, least, count back, how many left, how much less is_?, difference, count on, strategy, partition, tens, ones

Key skills for subtraction at y2:

Recognise the place value of each digit in a 2-digit number
Recall and use subtraction facts to 20 fluently, and derive and use related facts up to 100
Subtract using concrete objects, pictorial representations, 100 squares and mentally, including: a 2-digit
number and ones, a 2-digit number and tens, and two 2-digit numbers
Show that subtraction of one number from another cannot be done in any order
Recognise and use inverse relationship between addition and subtraction, using this to check calculations and missing number problems
Solve simple addition and subtraction problems including measures, using concrete objects, pictorial
representation, and also applying their increasing knowledge of mental and written methods
Read and write numbers to at least 100 in numerals and in words

Subtracting a 2-digit number using place value and columns	Subtract the 13. Then subtract the 10s. This may be done in or out of a place value grid. $38-16=22$	Subtract the 13. Then subtract the 103.
Subtracting a 2-digit number with exchange		Exchange 1 ten for 10 ones. Then subtract the 1 s . Then subtract the 10 s .

Subtract with 2-digit numbers

Subtract on a number line by counting on, aiming to develop mental subtraction skills.
This strategy will be used for:

2-digit numbers subtract ones (by taking away / counting on) e.g. 36-17
2-digit numbers subtract tens (by taking away / counting on) e.g. 48-30
Subtracting pairs of 2-digit numbers (see below):

Continue to revisit y1 counting back when appropriate.

Teaching children to bridge through ten

 can help them to become more efficient, for example 42-25
Mental strategy - subtract numbers close together by counting on including bridging through 10:

Many mental strategies are taught.
Children are taught to
is more
be clear subtraction. recognise that when numbers are close together, it efficient to count on the difference. They need to about the relationship between addition and

Key vocabulary: equal to, take, take away, less, minus, subtract, leaves, distance between, how many more, how many fewer / less than, most, least, count back, how many left, how much less is_?, difference, count on, strategy, partition, tens, exchange, decrease, hundreds, value, digit
Key skills for subtraction at Y 3 :
Subtract mentally a: 3-digit number and ones, 3-digit number and tens, 3-digit number and hundreds
Estimate answers and use inverse operations to check
Solve problems, including missing number problems
Find 10 or 100 more or less than a given number
Recognise the place value of each digit in a 3-digit number
Counting up differences as a mental strategy when numbers are close together or near multiples of 10
Read and write numbers up to 1000 in numerals and words
Practise mental subtraction strategies, such as subtracting near multiples of 10 and adjusting (e.g. subtracting 19 or 21) and select most appropriate methods to subtract, explaining why; counting on, counting back

Subtract with 2-and 3-digit numbers

Introduce partitioned column subtraction method.

STEP 1: introduce $89-35=54$ this method with examples where no exchanging is required.

$$
\begin{aligned}
& 89-35=54 \\
& 80+9 \\
& =\frac{30+5}{50+4}
\end{aligned}
$$

Emphasise that the value hasn't changed, we have just partitioned it in a different way.

> STEP 2: introduce 72-47= "exchanging" through
> practical subtraction. Make the larger number with Base

10, then subtract 47 from it.

Before subtracting ' 7 ' from the 72 blocks, they will need to exchange a row of 10 for ten units. Then subtract 7 , and subtract 4 tens.

STEP 3: Once pupils are secure with the understanding of "exchanging", they can use the partitioned column method to subtract any 2 and 3 -digit numbers.

Subtracting moneypartition into e.g. $\mathrm{E} 1+30 \mathrm{p}+8 \mathrm{p}$
100
200 + $30+8$ $0+90+2$

Key vocabulary: equal to, take, take away, less, minus, subtract, leaves, distance between, how many more, how many fewer / less than, most, least, count back, how many left, how much less is_? difference, count on, strategy, partition, tens, exchange, decrease, hundreds, thousands, value, digit, inverse

Key skills for subtraction at Y4:

Subtract by counting on where numbers are close together or they are near to multiples of 10, 100 etc.
Select the most appropriate and efficient methods for given subtraction calculations
Estimate and use inverse operations to check answers
Solve addition and subtraction two-step problems, choosing which operations and methods to use and why
Solve simple measure and money problems involving fractions and decimals to two decimal places
Find 1000 more or less than a given number
Count backwards through zero, including negative numbers
Recognise place value of each digit in a 4-digit number
Round any number to the nearest 10,100 or 1000
Solve number and practical problems that involve the above, with increasingly large positive numbers

Subtract with up to 4-digit numbers

Partitioned column subtraction with "exchanging" (decomposition):

To introduce the compact method, ask children to perform a subtraction calculation with the familiar partitioned column subtraction then display the compact version for the calculation they have done. Ask pupils to consider how it relates to the method they know, what is similar and what is different, to develop an understanding of it.

Always encourage children to consider the best method for the numbers involvedmental, counting on, counting back or written method.

Mental strategies

Continue to use the "Frog Jumping" method.

Subtract with increasingly large and more complex numbers and decimal values

Key vocabulary: distance between, how many more, how many fewer / less than, most, least,
count back, how many left, how much less is_? difference, count on, strategy, partition, tens, ones, place value vocabulary to 1 million, exchange, decrease, hundreds, value, digit, inverse, tenths, hundredths, decimal point, decimal
Key skills for subtraction at Y6:
Solve addition and subtraction multi-step problems in context, deciding which operations and methods to use and why
Read, write, order and compare numbers up to 10 million and determine the value of each digit
Round any whole number to a required degree of accuracy
Use negative numbers in context, and calculate intervals across zero
Children need to utilise and consider a range of mental subtraction strategies, jottings and written methods before choosing how to calculate

Key vocabulary: many left, how much less is_? difference, count on, strategy, partition, tens, ones, place value vocabulary to hundreds of thousands, exchange, decrease, hundreds, value, digit, inverse, tenths, hundredths, decimal point, decimal

Key skills for subtraction at Y 5 :

Subtract numbers mentally with increasingly large numbers
Use rounding and estimation to check answers to calculations and determine, in a range of contexts,
levels of accuracy
Solve addition and subtraction multi-step problems in context, deciding which operations and methods to use and why
Read, write, order and compare numbers to at least 1 million and determine the value of each digit
Count forwards or backwards in steps of powers of 10 for any given number up to 1 million
Interpret negative numbers in context, counting forwards and backwards with positive and negative integers through 0
Round any number up to 1 million to the nearest $10,100,1000,10000$ and 100000

How many legs will 3 teddies have?

Children will engage in a wide variety of songs and rhymes, games and activities. In practical activities and through discussion they will begin to solve problems involving doubling.

'Three apples for you and three apples for me. How many apples altogether?'

Key vocabulary: groups of, lots of, times, altogether, count

Key skills for multiplication in Reception:

- Count in multiples of 2,5 and 10
- Solve one-step problems involving multiplication, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher
- Make connections between arrays, number patterns, and counting in twos, fives and tens
- Begin to understand doubling using concrete objects and pictorial representations

'Six pairs of socks
How many socks altogether? 2, 4, 6, 8, 10, 12'

- Give children experience of counting equal group of objects in $2 s$, $5 s$ and 10s.
- Present practical problem-solving activities involving counting equal sets or groups, as above.

Recognising multiplication as repeated addition $6 \times 5=30$

Year 1 Multiplication	Recognising and making equal groups Children arrange objects in equal and unequal groups and understand how to recognise whether they are equal. A \qquad	Recognising and making equal groups Children draw and represent equal and unequal groups. $\% \% \%$	Describe equal groups using words Three equal groups of 4 . Four equal groups of 3 .
	Finding the total of equal groups by counting in $\mathbf{2 s}, 5 \mathrm{~s}$ and 10 s $4 \rightarrow$ There are 5 pens in each pack. $5 \ldots 10 \ldots 15 \ldots 20 \ldots 25 \ldots 30 \ldots 35 \ldots 40 \ldots$	Finding the total of equal groups by counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s 100 squares and ten frames support counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s . 	Finding the total of equal groups by counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s Use a number line to support repeated addition through counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s .

Key vocabulary: groups of, lots of, times, array, altogether, multiply, count

Key skills for multiplication at Y 1 :

- Count in multiples of 2,5 and 10
- Solve one-step problems involving multiplication, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher
- Make connections between arrays, number patterns, and counting in twos, fives and tens
- Begin to understand doubling using concrete objects and pictorial representations

Skill: Solve 1-step problems using multiplication \quad| Year: $1 / 2$ |
| :--- |

Key vocabulary: groups of, lots of, times, array, altogether, multiply, count, multiplied by, repeated addition, column, row, sets of, equal groups, times as big as, once, twice, three times...
Key skills for multiplication at Y 2 :
Count in steps of 2,3 and 5 from zero, and in 10s from any number
Recall and use multiplication facts from the 2,5 and 10 multiplication and division tables, including
recognising odds and evens
Write and calculate number statements using the x and $=$ signs
Show that multiplication can be done in any order (commutative)
Solve a range of problems involving multiplication, using concrete objects, arrays, repeated addition,
mental methods, and multiplication facts
Use a variety of language to discuss and describe multiplication

	Concesto	Pictoral	Abstrat
			Use a number line and write as repeated $5+5+5=15$ $3 \times 5=15$

Learning $\times 2$,
$\times 5$ and $\times 10$ $\times 5$ and $\times 10$ table facts

Develop an understanding of how to unitise groups of 2,5 and 10 and learn corresponding times-table facts.

3 groups of 10 ... 10, 20, 30
$3 \times 10=30$

Understand how to relate counting in unitised groups and repeated addition with knowing key times-table facts.

0000000000

0000000000
0000000000

$10+10+10=30$
$3 \times 10=30$

Multiply 2-digit numbers by single-digit numbers

Introduce partitioning method for multiplying 2-digit by single-digit numbers:

$$
\begin{array}{r}
34 \times 6= \\
30 \times 6=180 \\
4 \times 6=\frac{24}{204}
\end{array}
$$

Multiply multiples of ten by a single digit (e.g. 20×4) using their knowledge of multiplication facts and place value.
Recall and work out multiplication facts in the 2, 3, 4, 5, 8 and 10 times tables. Work out multiplication facts not known by repeated addition or other taught mental strategies (e.g. by commutative law, working out near multiples and adjusting, using doubling etc.). Strategies to support this are repeated addition using a number line, bead bars and arrays:
$13 \times 8=104$
13
$\begin{array}{r}\times \quad 8 \\ \hline 24\end{array}$
$+80(10 \times 8)$
104

Use the language of place value to ensure understanding.

Include an addition symbol when adding partial products.

Key vocabulary: groups of, lots of, times, array, altogether, multiply, count, multiplied by, repeated addition, column, row, commutative, sets of, equal groups, times, _times as big as, once, twice, three times..., partition, grid method, multiple, product, tens, ones, value

Key skills for multiplication:

Recall and use multiplication facts for the 2, 3, 4, 5, 8 and 10 multiplication tables, and multiply multiples of 10
Write and calculate number statements using the multiplication tables they know, including 2-digit \times
single-digit, drawing upon mental methods, and progressing to reliable written methods
Solve multiplication problems, including missing number problems
Develop mental strategies using commutativity (e.g. $4 \times 12 \times 5=4 \times 5 \times 12=20 \times 12=240$)
Solve simple problems in contexts, deciding which operations and methods to use
Develop efficient mental methods to solve a range of problems e.g. ? $\times 5=20, \quad 3 \times ?=18, \quad ? \times ?=32$

Multiply 2- and 3-digit numbers by a single digit.

Recall all multiplication tables up to 12×12

$$
\begin{aligned}
& 134 \times 6= \\
& 100 \times 6= 600 \\
& 30 \times 6= 180 \\
& 4 \times 6 \underline{24} \\
& 804
\end{aligned}
$$

$$
36 \times 4=144
$$

$$
36 \times 4=144
$$

36
$\times \quad 4$
$+24 \times 6)$
$\frac{120}{(4 \times 30)}$
$127 \times 6=762$
127
$\begin{array}{r}x \quad 6 \\ \hline 42(6 \times 7)\end{array}$
+120 (6x20)
600
$\underline{762}$$(6 \times 100)$ when children are confident and accurate multiplying 2-and 3-digit numbers by a single digit this way, and are already confident in "carrying" for written addition.

Move on to short multiplication if and

Choose an appropriate mental or written strategy: When multiplying by $5, x 10$ then halve. When multiplying by 4 , double, then double again.

Key vocabulary: groups of, lots of, times, array, altogether, multiply, count, multiplied by, repeated addition, array, column, row, commutative, groups of, sets of, lots of, equal groups, times, multiply, times as big as, once, twice, three times..., partition, grid method, total, multiple, product, sets of, inverse

Key skills for multiplication at Y4:

- Count in multiples of 6,7,9,25 and 1000
- Recall multiplication facts for all multiplication tables up to 12×12
- Recognise place value of digits in up to 4-digit numbers
- Use place value, known facts and derived facts to multiply mentally, e.g. multiply by $1,10,100$, by 0 , or to multiply 3 numbers
- Use commutativity and other strategies mentally $3 \times 6=6 \times 3,2 \times 6 \times 5=10 \times 6,39 \times 7=30 \times 7+9 \times 7$
- Solve problems with increasingly complex multiplication in a range of contexts
- Count in multiples of 6,7,9,25 and 1000
- Recognise the place value of each digit in a 4-digit number (thousands, hundreds, tens, and ones)

Skill: Multiply 4-digit numbers by 1-digit numbers					Year: 5
	Th 1 	H 8	T 2 7 1		When multiplying 4digit numbers, place value counters are the best manipulative to use to support children in their understanding of the formal written method. If children are multiplying larger numbers and struggling with their times tables, encourage the use of multiplication grids so children can focus on the use of the written method.

Key vocabulary: groups of, lots of, times, array, altogether, multiply, count, multiplied by, repeated addition, column, row, commutative, sets of, equal groups,_times as big as, once, twice, three times..., partition, grid method, total, multiple, product, inverse, square, factor, integer, decimal, short/long multiplication, "carry"

Key skills for multiplication at Y 5 :
Identify multiples and factors, using knowledge of multiplication tables to 12×12
Solve problems where larger numbers are decomposed into their factors
Multiply and divide integers and decimals by 10, 100 and 1000
Recognise and use square and cube numbers and their notation
Solve problems involving combinations of operations, choosing and using calculations and methods appropriately

Multiply up to 4-digit numbers by 1 or 2 digits

$56 \times 27=1512$
$124 \times 26=3224$
56
$\begin{array}{r}\times 27 \\ \hline\end{array}$
$39^{4} 2$
$\frac{+11^{1} 20}{\frac{1512}{1}}(20 \times 56)$

$$
\begin{array}{r}
124 \\
\times \quad 26 \\
\hline 7^{1} 4^{2} 4 \\
+2480 \\
\hline 3224
\end{array}
$$

Choose an appropriate mental or written strategy:
When multiplying by $5, x 10$ then halve.
When multiplying by 4 , double, then double again.

Year 6 Short and long multiplication as in $Y 5$, and multiply decimals with up to 2d.p by a single digit

Remind children that the single digit belongs in the ones column.

TTh	Th	H	T	O
	2	7	3	9
\times			2	8
2^{2}	5^{1}	3^{9}	7^{1}	2
5	4	7	8	0
7	6	6	9	2

$$
2,739 \times 28=76,692
$$

Children will be able to:

- Use short multiplication (see Y 5) to multiply numbers with more than 4 digits by a single digit; to multiply money and measures, and to multiply decimals with up to 2d.p. by a single digit.
- Use long multiplication (see Y 5) to multiply numbers with at least 4 digits by a 2 digit number.

$$
\begin{array}{r}
53.2 \\
\times \quad 24.0 \\
\hline 21^{12} .8 \\
+\quad 1064.2 \times 4)
\end{array}
$$

Key vocabulary: groups of, lots of, times, array, altogether, multiply, count, multiplied by, repeated addition, array, column, row, commutative, sets of, equal groups, times as big as, once, twice, three times..., partition, grid method, total, multiple, product, inverse, square, factor, integer, decimal, short / long multiplication, "carry", tenths, hundredths, decimal

Key skills for multiplication at Y6:
Recall multiplication facts for all times tables up to 12×12 (as Y 4 and Y 5)
Multiply multi-digit numbers, up to 4-digit $\times 2$-digit using long multiplication
Perform mental calculations with mixed operations and large numbers
Solve multi-step problems in a range of contexts, choosing appropriate combinations of operations and methods
Estimate answers using rounding and approximation and determine levels of accuracy
Round any integer to a required degree of accuracy

Group and share small quantities

Using songs, objects, diagrams and pictorial representations to solve problems involving both grouping and sharing.

Can you share 8 apples into 2 groups? How many will be in each group?

Sharing:

'Half of the apples for you and half of the apples for me.'

Example division problem in a familiar context:

There are 2 pupils on this table and there are 10 pieces of fruit to share between us. If we share them equally, how many will we each get?

Can they work it out and give
a division statement... ?
"10 shared between 2 people gives you 5 each."

Pupils should :

- Use lots of practical apparatus, arrays and picture representations.
- Be taught to understand "sharing" (Share these sweets between 2 people).

Be introduced to count in multiples of $2 s$ and $10 s$.

- Find half of a group of objects by sharing into 2 equal groups.

Key vocabulary: share, share equally, one each, two each..., group, groups of, lots of, deal, halve, half

Key number skills needed for division at the end of EYFS:

- Solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations; arrays with the support of the teacher
- Through grouping and sharing small quantities, pupils begin to understand, division, and finding simple fractions of objects, numbers and quantities
- They make connections between objects, number patterns, and counting in twos, and tens
- Division activities may be taught through cooking and snack time, not necessarily in a Maths lesson

Use lots of practical apparatus, arrays and picture representations.

Be taught to understand the difference between "grouping" objects (How many groups of 2 can you make?) and "sharing" (Share these sweets between 2 people).

Be able to count in multiples of $2 s, 5 s$ and $10 s$. Find half of a group of objects by sharing into 2 equal groups.

Using objects, diagrams and pictorial representations to solve problems involving both grouping and sharing.

How many groups of 4 can be made with 12 stars? $=3$

Grouping:

Sharing:

Pupils should:

Example division problem in a familiar context:

There are 6 pupils on this table and there are 18 pieces of fruit to share between us. If we share them equally, how many will we each get?

Can they work it out and give a division statement... ?
"18 shared between 6 people gives you 3 each."

Key vocabulary: share, share equally, one each, two each..., group, groups of, lots of, array, halve, half

Key number skills needed for division at Y 1 :

Solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations; arrays with the support of the teacher Through grouping and sharing small quantities, pupils begin to understand, division, and finding simple fractions of objects, numbers and quantities
Make connections between arrays, number patterns, and counting in twos, fives and tens

Key vocabulary: share, share equally, one each, two each..., group, groups of, lots of, array, halve, half

Key number skills needed for division at Y 1 :

Solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations; arrays with the support of the teacher
Through grouping and sharing small quantities, pupils begin to understand, division, and finding simple fractions of objects, numbers and quantities
Make connections between arrays, number patterns, and counting in twos, fives and tens

Grouping equally	Understand how to make equal groups from a whole． $0.929 \% 80$ \square ？ \square 02 8 divided into 4 equal groups． There are 2 in each group．	Understand the relationship between grouping and the division statements． $12 \div 3=4$ $12 \div 4=3$ \qquad $12 \div 6=2$ \qquad $12 \div 2=6$ \square	Understand how to relate division by grouping to repeated subtraction． There are 4 groups now． 12 divided into groups of 3. $12 \div 3=4$ There are 4 groups．
Using known times－tables to solve divisions	Understand the relationship between multiplication facts and division． 4 groups of 5 cars is 20 cars in total． 20 divided by 4 is 5 ．	Link equal grouping with repeated subtraction and known times－table facts to support division． 40 divided by 4 is 10 ． Use a bar model to support understanding of the link between times－table knowledge and division．	Relate times－table knowledge directly to division． $\begin{aligned} & 1 \times 10=10 \\ & 2 \times 10=20 \\ & 3 \times 10=30 \\ & 4 \times 10=40 \\ & 5 \times 10=50 \\ & 6 \times 10=60 \\ & 7 \times 10=70 \\ & 8 \times 10=80 \end{aligned}$ I used the 10 tos－table $3 \times 10=30$ I know that 3 groups of 10 makes 30 ，so I know that 30 divided by 10 is 3 ． $3 \times 10=30 \text { so } 30+10=3$

Key vocabulary：share，share equally，one each，two each．．．，group，equal groups of， lots of，array，halve，half，divide，divided by，divided into，division，grouping， number line，left，left over
Key number skills needed for division at Y 2 ：
Count in steps of 2，3，5 and 10 from 0
Recall and use multiplication and division facts for the 2，5 and 10 multiplication tables，including recognising odd and even numbers
Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the x, \div and $=$ signs
Show that multiplication of two numbers can be done in any order（commutative）and division of one number by another cannot
Solve problems involving multiplication and division，using materials，arrays，repeated addition，mental methods，and multiplication and division facts，including problems in contexts

Group and share, using the \div and $=$ sign

Use objects, arrays, diagrams and pictorial representations, and grouping on a number line.

$12 \div 3$ as "How many groups of 3 are in 12?"

Key vocabulary: share, share equally, one each, two each..., group, equal groups of,
lots of, array, halve, half, divide, divided by, divided into, division, grouping,
number line, left, left over
Key number skills needed for division at Y 2 :
Count in steps of 2,3,5 and 10 from 0
Recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers
Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the x, \div and $=$ signs
Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot
Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts

Key vocabulary: share, share equally, one each, two each..., group, equal groups of, lots of, array, halve, half, divide, divided by, divided into, division, grouping, number line, left, left over, inverse, short division, 'carry', remainder, multiple

Key number skills needed for division at Y3:

Recall and use multiplication and division facts for the 2-10 multiplication tables (through doubling, connect the 2, 4 and 8s)
Write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for 2-digit numbers times 1-digit numbers, using mental and progressing to formal written methods
Solve problems, in contexts, and including missing number problems, involving multiplication and division Develop efficient mental methods, for example, using multiplication and division facts (e.g. using $3 \times 2=6$, $6 \div 3=2$ and $2=6 \div 3$) to derive related facts ($30 \times 2=60$, so $60 \div 3=20$ and $20=60 \div 3$) Develop reliable written methods for division, starting with calculations of 2 -digit numbers by 1 -digit numbers and progressing to the formal written method of short division

Step 3 Only taught when pupils can calculate 'remainders'.
Key vocabulary: share, share equally, one each, two each..., group, equal groups of, lots of, array, deal, halve, half, divide, divided by, divided into, division, grouping, number line, left, left over, inverse, short division, 'carry', remainder, multiple

Key number skills needed for division at Y 3 :

- Recall and use multiplication and division facts for the 2-10 multiplication tables (through doubling, connect the 2, 4 and 8s)
- Write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for 2-digit numbers times 1-digit numbers, using mental and progressing to formal written methods
- Solve problems, in contexts, and including missing number problems, involving multiplication and division
- Develop efficient mental methods, for example, using multiplication and division facts (e.g. using $3 \times 2=6$, $6 \div 3=2$ and $2=6 \div 3$) to derive related facts ($30 \times 2=60$, so $60 \div 3=20$ and $20=60 \div 3$)
- Develop reliable written methods for division, starting with calculations of 2-digit numbers by 1-digit numbers and progressing to the formal written method of short division

Real life contexts need to be used routinely to help pupils gain a full understanding, and the ability to recognise the place of division and how to apply it to
problems.

STEP 1: Pupils must be secure with the process of short division for dividing 2-digit numbers by a single digit (those that do not result in a final remainder -see steps in Y3), but must understand how to calculate remainders, using this to "carry" remainders within the calculation process (see example).

STEP 2: Pupils move on to dividing numbers with up to 3-digits by a single digit; however, problems and calculations provided should not result in a final answer with remainder at this stage. Children who exceed this expectation may progress to y_{5} level.

When the answer for the first column is zero ($1 \div 5$, as in example), children could initially write a zero above to acknowledge its place, and must always "carry" the number (1) over to the next digit as a remainder.

Include money and measure contexts when confident.

Key vocabulary: share, share equally, one each, two each..., group, equal groups of, lots of, array, deal, halve, half divide, divided by, divided into, division, grouping, number line, left, left over, inverse, short division, "carry", remainder, multiple, divisible by, factor

Key number skills needed for division at Y 4 :
Recall multiplication and division facts for all numbers up to 12×12
Use place value, known and derived facts to multiply and divide mentally, including: multiplying and dividing by 10 and 100 and 1
Pupils practise to become fluent in the formal written method of short division with exact answers when dividing by a 1-digit number
Pupils practise mental methods and extend this to 3-digit numbers to derive facts, e.g. $200 \times 3=600$ so $600 \div 3=200$
Pupils solve two-step problems in contexts, choosing the appropriate operation, working with increasingly hard numbers. This should include correspondence questions such as three cakes shared equally between 10 children

Key vocabulary: share, share equally, one each, two each..., group, equal groups of, lots of, array, deal, halve, half divide, divided by, divided into, division, grouping, number line, left,
left over, inverse, short division, "carry", remainder, multiple, divisible by, factor
Key number skills needed for division at Y4:
Recall multiplication and division facts for all numbers up to 12×12
Use place value, known and derived facts to multiply and divide mentally, including: multiplying and dividing by 10 and 100 and 1
Pupils practise to become fluent in the formal written method of short division with exact answers when dividing by a 1 -digit number
Pupils practise mental methods and extend this to 3-digit numbers to derive facts, e.g. $200 \times 3=600$ so $600 \div 3=200$
Pupils solve two-step problems in contexts, choosing the appropriate operation, working with increasingly hard numbers. This should include correspondence questions such as three cakes shared equally between 10 children

Divide up to 4 digits by a single digit, including those with remainders

Short division, including remainder answers:

Short division with remainders: Now that pupils are introduced to examples that give rise to remainder answers, division needs to have a real-life problemsolving context, where pupils consider the meaning of the remainder and how to express it, i.e. as a fraction, a decimal, or as a rounded number or value, depending upon the context of the problem.
The answer to $5309 \div 8$ could be expressed as 663 and five eighths, 663 r 5 , as a decimal, or rounded as appropriate to the problem involved.

If children are confident and accurate:

- Introduce long division for pupils who are ready to divide any number
by a 2 -digit number (e.g. $2678 \div 19$). This is a Year 6 expectation.
Times table written down to aid calculation.

Key vocabulary: share, share equally, one each, two each..., group, equal groups of, lots of, array, divide, divided by, divided into, division, grouping, number line, left, left over, short division, deal, halve, half, "carry", remainder, multiple, divisible by, factor, inverse, quotient, prime number, prime factors, composite number (non-prime)

Key number skills needed for division at Y 5 :
Recall multiplication and division facts for all numbers up to 12×12 (as in Y4)
Multiply and divide numbers mentally, drawing upon known facts
Identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers
Solve problems involving multiplication and division where larger numbers are decomposed into their factors
Multiply and divide whole numbers and those involving decimals by 10,100 and 1000
Use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers
Work out whether a number up to 100 is prime, and recall prime numbers to 19
Divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the contex \dagger
Use multiplication and division as inverses
Interpret non-integer answers to division by expressing results in different ways according to the context, including with remainders, as fractions, as decimals or by rounding (e.g. $98 \div 4=24 r 2=241 / 2=24.5$)
Solve problems involving combinations of all four operations, including understanding of the equals sign, and including division for scaling by different fractions and problems involving simple rates

Divide at least 4 digits by both single-digit and

2-digit numbers (including decimal numbers and quantities)

Short division, for dividing by a single digit: e.g. $6497 \div 8$

Short division with remainders: Pupils should continue to use this method, but with numbers to at least 4 digits, and understand how to express remainders as fractions, decimals, whole number remainders, or rounded numbers. Real-life problem-solving contexts need to be the starting point, where pupils have to consider the most appropriate way to express the remainder.
Calculating a decimal remainder: In this example, rather than expressing the remainder as $\underline{r} \mathbf{1}$, a decimal point is added after the units because there is still a remainder, and the one remainder is carried on to zeros after the decimal point (to show there was no decimal value in the original number). Keep dividing to an appropriate degree of accuracy for the problem being solved.

Introduce long division for dividing by 2 digits.

'Bus Stop' method dividing three or four digit numbers by two digit numbers with decimals with two decimal places. Answer as a decimal.

Where remainders occur, pupils should express them as fractions, decimals or use rounding, depending upon the problem.

Key vocabulary: share, share equally, one each, two each..., group, equal groups of, lots of, array, divide, divided by, divided into, division, grouping, number line, left, left over, short division, deal, halve, half, "carry", remainder, multiple, divisible by, factor, inverse, quotient, prime number, prime factors, composite number (non-prime), common factor

Key number skills needed for division at Y6:

Recall and use multiplication and division facts for all numbers to 12×12 for more complex calculations Divide numbers up to 4 digits by a 2 -digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context. Use short division where appropriate
Perform mental calculations, including with mixed operations and large numbers
Identify common factors, common multiples and prime numbers
Solve problems involving all 4 operations
Use estimation to check answers to calculations and determine accuracy, in the context of a problem Use written division methods in cases where the answer has up to two decimal places
Solve problems which require answers to be rounded to specified degrees of accuracy

Alternative Long division method for Y6:

Long division - an alternative approach

RANBY HOUSE PREP SCHOOL STAND OUT FROM THE CROWD

Thank you for reading our guide. We hope you have found it useful.

If you require further information, please do not hesitate to contact your child's maths teacher, or our mathematics subject leader via the school reception. Thank you.

Email: officeprep@wsnl.co.uk Tel: 01777703138

Website: www.wsnl.co.uk/prep

Your child's FUTURE matters to us. 'BE the BEST you can BE in all that you do.'

Being THE sector leading school in the area and the FIRST SCHOOL of CHOICE for parents and families.

